

Experten für angepasste Lösungen

Systematische Schritte zur Energiebezugsreduktion

Webinar für Kinobetreibende

07.12.2022 Münster

Unternehmensvorstellung

Zur Person

Martin Deiters | Teamleiter "Team Energieeffizienz"

2014 - 2018

 Beratungen in Wohngebäudebereich (Schwerpunkt gemischt genutzte Gebäude HKL + regenerative Energien)

seit 2018

- Beratung von Unternehmen (Gewerbe, Handel, Dienstleistung, Industrie)
 - Externer Energiemanagementbeauftragter
 - Energieaudits
 - Maßnahmenentwicklung
 - Bauherrenvertreter
 - Energiekonzepte
- ca. 100 besuchte Unternehmen

Karoline Munser | Projektingenieurin

Studium:

- Studium an der RWTH-Aachen, Maschinenbau Fachrichtung Energietechnik
- Bachelorarbeit: Experimentelle Analyse der Auswirkungen von Fehlern in einem Heizkreislauf mithilfe eines Hardware in the Loop-Prüfstands

seit 2022

- Projektingenieurin bei der encadi im Bereich Gewerbe, Handel, Dienstleistung, Industrie)
- Masterarbeit zum Thema: Bewertung von Möglichkeiten zur technischen und wirtschaftlichen Optimierung der energetischen Unabhängigkeit auf einer unternehmensübergreifenden Ebene.

Unternehmensvorstellung

encadi GmbH

- Gründung 2009
- 27 Mitarbeiter
- Standort am Münsteraner Hafen
- Energie- und Ressourcenberatung:
 - nachhaltig | technisch | kaufmännisch | digital
- Umsetzungsbegleitung / Bauherrenvertretung:
 - Begleitung von der Idee bis zum Betriebsende
- Kundensegmente:
 - Produzierendes Gewerbe, u.A. Bäckereien, Fleischereien usw.
 - Handel | Dienstleistung (Gesundheit, Hotels, Banken, LEH)
 - Industrie (u. A. Lebensmittel, ...)
 - Kommunale Auftraggeber

Team Energieeffizienz

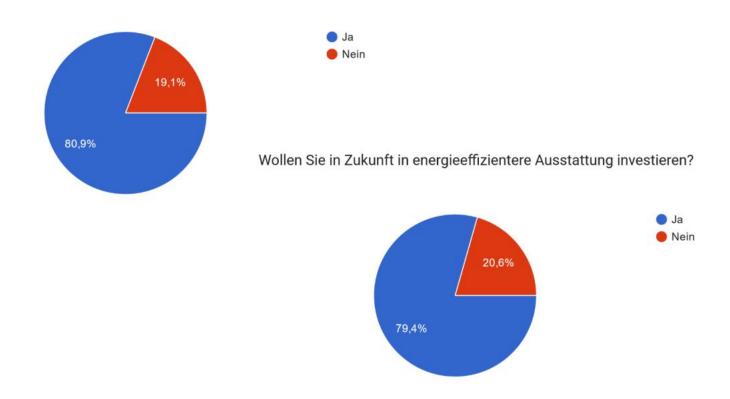
Arbeitsschwerpunkte

Energieberatung	geförderte Energieaudits		
	Quick Check Energie		
	(Energie-) Konzepte		
	Abwärmenutzung		
	Maßnahmenentwicklung		
	Optimierung von Anlagen und Prozessen		
Förderanträge	Kälte		
	Landwirtschaft		
	Energietechnik (u.A. HKL)		
Fachkompetenzen	Bäckereitechnik		
	Kälte		

Agenda

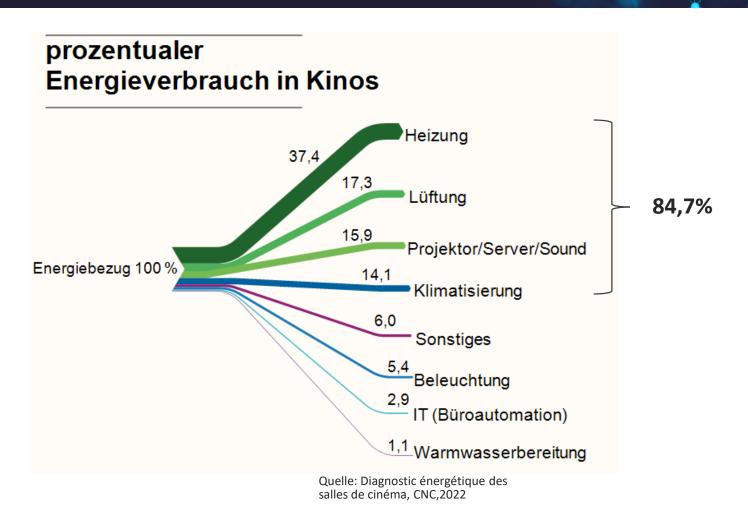
- Zum Unternehmen
- Energieeinsatz und -verbrauch
- Maßnahmen zur Effizienzsteigerung
- Fördermöglichkeiten
- Noch Fragen? Offener Austausch und Fallbeispiele

Agenda


- Zum Unternehmen
- Energieeinsatz und -verbrauch
- Maßnahmen zur Effizienzsteigerung
- 4 Fördermöglichkeiten
- Noch Fragen? Offener Austausch und Fallbeispiele

Energieeinsatz und -verbrauch

Warum Sie eigentlich heute hier sind....


Beziehen Sie für Ihr Kino aktuell Gas?

Energieeinsatz und -verbrauch

Wo geht die ganze Energie eigentlich hin?

Erwartungshaltung

"Wir können die Energiepreise nicht beeinflussen, aber wir können Ihnen dabei helfen, Ihren Energiebezug systematisch zu reduzieren und Energie strategisch wirtschaftlich einzukaufen, um dadurch monetäre Einsparungen zu erzielen."

Agenda

- Zum Unternehmen
- Energieeinsatz und -verbrauch
- Maßnahmen zur Effizienzsteigerung
- Fördermöglichkeiten
- Noch Fragen? Offener Austausch und Fallbeispiele

Effizienzsteigernde Maßnahmen

Wärmeerzeugung und Verwendung

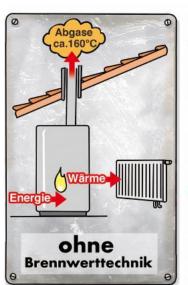
Effizienzsteigernde Maßnahmen

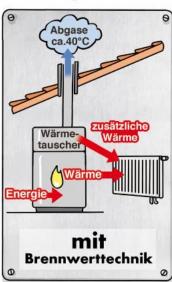
Wärmeerzeugung / Verluste im/am Kessel – 37 % des Energiebedarfs

Konstanttemperaturkessel: $\eta \sim 70 \%$

- Hohe Vorlauftemperaturen 90°C
- Kein Korrosionsschutz
- i.d.R. keine Temperaturregelung

Niedertemperaturkessel: η ~ 85 %


- Niedrigere Temperaturen zu vorgenanntem
- Abgas- und Wärmeverluste


Brennwertkessel: $\eta \sim 103 \%$ bis 110 %

- Vorerwärmung der Außenluft
- Doppelter Wärmenutzen durch Wärmetauscher

Einsparpotenzial: bis zu 30 %

Quelle:https://www.heizsparer.de/heizung/heizungssysteme/oelheizung/oelheizung-niedertemperatur

Effizienzsteigernde Maßnahmen

Außentemperaturregelung / Nachtabsenkung

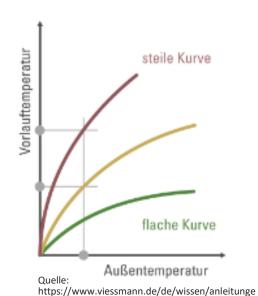
Automatische Reaktion des Wärmeerzeugers auf das Außenklima / auf Nichtnutzungszeiten.

Einsparpotenzial: bis zu 50 %

- Abhängig von der Betriebszeit
- Fähigkeiten des Erzeugers

Effizienzsteigernde Maßnahmen

Absenken der Vorlauftemperatur


Vorlauftemperatur auf den tatsächlichen Bedarf anpassen.

- Heizkennlinie überprüfen
 - Neigung: Reaktion der Vorlauftemperatur auf die Außentemperatur
 - Niveau: Reaktion der Vorlauftemperatur auf die Raumtemperatur

Einsparpotenzial: bis zu 5 - 10 %

<u>Tipp</u>: Verbraucher aufnehmen (Hersteller schreiben dies immer auf die Typenschilder) und mit IST-Werten abgleichen

n-und-tipps/heizkurve-einstellen.html

Effizienzsteigernde Maßnahmen

Prüfen der Vor- und Rücklauftemperaturen / Überprüfen der Pumpenleistungen / -zeiten

Sind die Vor- und Rücklauftemperaturen abgeglichen? (hydraulischer Abgleich)

- Vorlauftemperatur:
 - Ist diese tatsächlich für den Heizkreis erforderlich?
 - Eine hohe Temperatur spricht i.d.R. für einen aktiven Heizkreis
 - Besteht zur Rücklauftemperatur eine Spreizung?
- Rücklauftemperatur
 - Optimal ca. 20K Differenz
 - Bei sehr geringer Differenz ggf. Förderhöhe der Pumpe zu hoch bzw. Pumpe im Dauerlauf
 - Je niedriger die Temperatur umso besser (so lange es behaglich ist)
- Rücklauftemperaturanhebung
- Drehzahlgeregelte Pumpen
- Warmwasserkreis am Heizkreis angeschlossen?
- Hydraulische Weichen korrekt abgeglichen

<u>Tipp</u>: Testen Sie sich bei den Temperaturen (z.B. Temperaturabsenkung) langsam heran und machen Sie das nur bei <u>nicht</u> hygienekritischen Heizkreisen.

Effizienzsteigernde Maßnahmen

Überprüfen der Rohrisolierung / Zirkulationszeiten

Beispiel Zirkulation

Durch eine Dämmung der Rohleitungen werden pro Meter Rohrleitung 60 W eingespart (DN 50). Bei einer angenommenen ungedämmten Rohrlänge von 125 m entstehen somit jährliche Verluste von 18.112 kWh.

= 2.717 EUR

Annahmen:

Materialkosten: 500 €

Montage: 2.500 €

Annahme: 10% Verlust durch Zirkulation

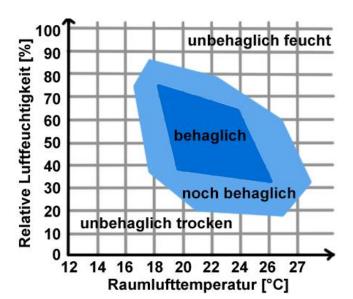
~ 1.811 kWh / Jahr = 272 EUR (nur thermisch)

Effizienzsteigernde Maßnahmen

Absenken der Raumtemperatur

Ein Absenken der Raumtemperatur um 1K (z.B. von 22°C auf 21°C) bringt enorme Einsparpotenziale.

Einsparpotenzial: bis zu 6 %

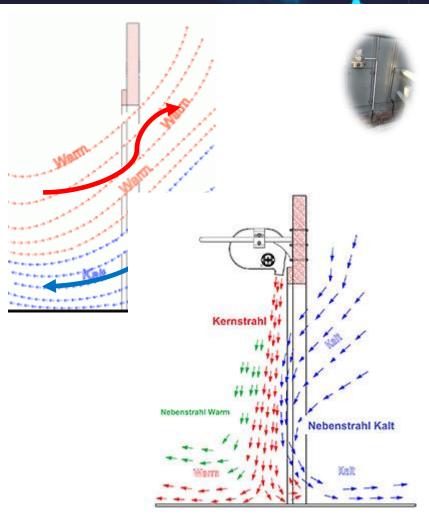


Effizienzsteigernde Maßnahmen

Absenken der Raumtemperatur

Ein Absenken der Raumtemperatur um 1K (z.B. von 22°C auf 21°C) bringt enorme Einsparpotenziale.

Einsparpotenzial: bis zu 6 %


Effizienzsteigernde Maßnahmen

Auswirkungen eines Türluftschleiers

Aufgabe: Die meist kalte Luft von draußen soll nicht in den Innenraum gelangen. Dadurch weniger Nachheizung erforderlich.

"Ein richtig eingebauter Türluftschleier kann bis zu 80% der Energieverluste reduzieren, wenn wir es mit einem Eingang ohne Türluftschleier vergleichen." (Quelle:

https://www.luftschleieranlagen.net/technologie/luftschleieranwendungen)

Quelle: https://luftschleier-anlage.de/thermovent/

Effizienzsteigernde Maßnahmen

Auswirkungen eines Türluftschleiers

Abhängig von:

- Größe der Tür
- Anzahl der Türen
- Luftgeschwindigkeiten
- Öffnungsgrad der Tür
- usw.

Errechnete Einsparung: 15% Aber auch abhängig wo er eingebaut wird.

Auszug aus einer anderen Maßnahme

Effizienzsteigernde Maßnahmen

Ist die Wärmepumpe eine gute Alternative?

Es kommt darauf an:

- Kalkulationszinssatz
- Energiekosten (beim Strom)
- Preissteigerung (beim Strom)
- Temperaturniveau
- Energiebedarf
- usw.

Vorteil: Unabhängig von Gas, Öl, usw.

<u>Nachteil:</u> Abhängig vom Strompreis, meist nicht ohne Probleme bei hohen Temperaturniveaus einsetzbar

<u>Tipp:</u> Hinterfragen Sie ihren Bedarf sowie das Temperaturniveau kritisch. Wärmepumpen sind für hohe Vorlauftemperaturen nicht immer geeignet. Berücksichtigen Sie bei Ihrer Entscheidung die oben genannten Punkte.

Effizienzsteigernde Maßnahmen

Ist ein Blockheizkraftwerk eine gute Alternative?

Es kommt darauf an:

- Kalkulationszinssatz
- Energiekosten
- Preissteigerung
- Temperaturniveau
- Energiebedarf
- Lastprofil, (Ziel sind hohe Laufzeiten, meist nur in der Grundlast sinnvoll)
- usw.

Vorteil: Eigenerzeugung von Strom und Wärme

Nachteil: Aktuell meist nur Gas BHKW in Betrieb

<u>Tipp:</u> Hinterfragen Sie ihren Bedarf sowie das Temperaturniveau kritisch. Wärmepumpen sind für hohe Vorlauftemperaturen nicht immer geeignet. Berücksichtigen Sie bei Ihrer Entscheidung die oben genannten Punkte.

Effizienzsteigernde Maßnahmen

Kälteerzeugung und Verwendung – 14 % des Energiebedarfs

Effizienzsteigernde Maßnahmen

Beispiel 1: Referenzkälteanlage

Anlagendaten:

Kälteleistung: 250 kW

Verdichterart: Schraubenverdichter

Kältemittel R-134a

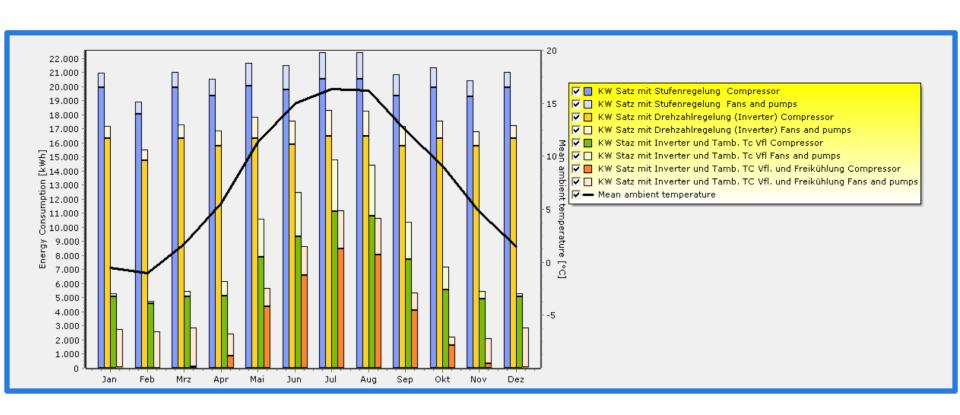
Benötigte Vorlauftemperatur 6°C 13:00 Uhr - 00:00 Uhr

Freikühlung ≤ 22°C Umgebungstemperatur

Kundenwunsch:

Energieeffizienzberechnung

- 1. Kaltwassersatz mit Stufenregelung (Referenz) vs.
- 2. Kaltwassersatz mit Drehzahlregelung (Inverter)
- 3. Kaltwassersatz mit Inverter und variabler Verflüssigungstemperatur
- Kaltwassersatz mit Inverter und variabler Verflüssigungstemperatur mit Freikühlung



Effizienzsteigernde Maßnahmen

Beispiel: Referenzkälteanlage

Energieeffizienzberechnung (Simulation)

Effizienzsteigernde Maßnahmen

Beispiel: Referenzkälteanlage

Ergebnis: Laufzeit 13:00 Uhr bis 00:00 Uhr

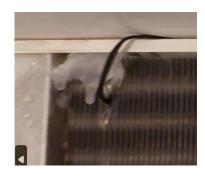
	Energieverbrauch [kWh]	EER	Einsparung [%]	Ersparnis [EUR] bei 0,4 EUR/kwh
Kaltwassersatz mit Stufenregelung (Referenz)	253.049 (101.220 EUR)	4,45		
Kaltwassersatz mit Drehzahlregelung (Inverter)	207.648 (83.059 EUR)	5,43	15,3	18.161
Kaltwassersatz mit Drehzahlregelung und Variabler Verflüssigungstemperatur	102.259 (40.904 EUR)	7,0	54,3	60.316
Kaltwassersatz mit Inverter und Variabler Verflüssigungstemperatur und Freikühlung + drehzahlgeregelter Ventilatoren und drehzahlgeregelter Pumpen	59.376 (23.750 EUR)	18,09	63,9	77.469

Effizienzsteigernde Maßnahmen

Weitere Optimierungsmöglichkeiten bei Kälteanlagen:

Anpassung Verflüssigungs- und Verdampfungstemperaturen

 Eingestellte Sollwerte der Verflüssigungs- und Verdampfungstemperatur überprüfen und an Bedarf anpassen (Grundsätzlich bewirkt eine Temperaturerhöhung (-absenkung) um ein Grad, eine Energieverbrauchserhöhung (-absenkung) von bis zu 2-3 %)



Effizienzsteigernde Maßnahmen

Weitere Optimierungsmöglichkeiten bei Kälteanlagen:

Vereisung am Verdampfer oder am Eingang

- Vereisung am Verdampfer erhöht den Ventilatorwiederstand → ↑ Energiebedarf
- Die Kälte- "Leistung" kann nicht an den Raum abgegeben werden → ↑ Energiebedarf
- Lösungsansatz:
 - Umpositionierung des Abtaubegrenzungsfühlers durch Fachunternehmen
 - Vermeidung von Fremdluft im Raum (z.B. Streifenvorhang)

Effizienzsteigernde Maßnahmen

Weitere Optimierungsmöglichkeiten bei Kälteanlagen:

EC-Ventilatoren

 Drehzahlgeregelte "EC-Ventilatoren" werden nach dem Tatsächlichen Bedarf gesteuert. Wenn wenig Kälteleistung gefordert ist, drehen diese langsamer → ↓ Energiebedarf. Einsparungen bis zu 50% sind möglich (z.B. 300 Watt zu 150 Watt)

Beispielrechnung (Normalkühlung)
Laufzeit Ventilator: 8h/d
Leistung 300 Watt * 8h/d * 365d/a = 876 kWh → 438 kWh *0,4 €/kWh →
Ersparnis = 175,20 EUR/a

Effizienzsteigernde Maßnahmen

Weitere Optimierungsmöglichkeiten bei Kälteanlagen:

Abtauung bei Tiefkühlräumen

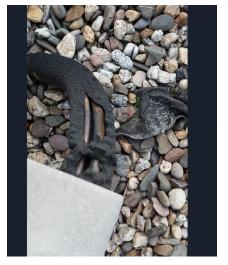
- Anpassung der Abtauzeiten an den Bedarf und nicht an fest eingestellten Uhrzeiten. Einsparungen bis zu 15% bis 20%
- Nutzung eines Shut-Up

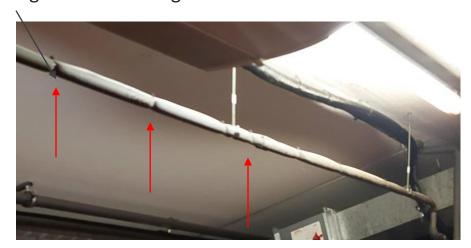
Beispielrechnung (Tiefkühlung)
Laufzeit Abtauung 2x/d á 30 Minuten mit 3kW = 3kWh/d * 365d/a = 1095 kWh
Anpassung an den Bedarf
Laufzeit Abtauung 1,5x/d á 30 Minuten mit 2,25kW = 2,25kWh/d * 365d/a =
821,25 kWh

Ersparnis = 273,75 kWh = 109,50 EUR/a

<u>Hinweis:</u> Die Nutzung eines Shut-Ups sogt für eine Verkürzung der Abtauzeit von bis zu 50%. Die Wärme der Abtauung bliebt im Verdampfer und dadurch wird effizienter abgetaut.

Quelle: Kelvion




Effizienzsteigernde Maßnahmen

Weitere Optimierungsmöglichkeiten bei Kälteanlagen:

Isolierung

- Kälteleitungen müssen diffusionsdicht und ohne Stauchungen isoliert werden, damit zum einen keine Kondensatbildung entsteht und zum anderen keine frühzeitige Verdampfung im Rohr erfolgt. Einsparungen bis zu 2 % bis 10 %
- Denn:
 - Kondensatbildung f\u00f6rdert Schimmel
 - Eine frühzeitige Verdampfung erhöht die Kälteleistung am Verdichter und dadurch steigt auch der Energiebedarf.

Effizienzsteigernde Maßnahmen

Weitere Optimierungsmöglichkeiten bei Kälteanlagen:

Kältemittel

Aufgrund der F-Gase-Verordnung müssen Kältemittel ggf. ausgetauscht werden.
 Dieser Austausch kann aufgrund der volumetrischen Kälteleistung (Kälteleistung pro kg Kältemittel) aufgrund schlechterer Verhältnisse zu höheren Betriebskosten führen. (bis zu 2-8%)

Kältemittel Kategorie		Kältemittel (Beispiele)	ODP ¹	GWP ²	Sicherheits- gruppe 3	Vorgaben der ChemRRV zu Anlagen mit Kältemitteln	
Ozonschicht- abbauende Kältemittel	FCKW (Fluorchlorkohlen- wasserstoffe, vollständig halogeniert)	Einstoff- Kältemittel	R-11 R-12 R-13 R-13B1	1.000 1.000 1.000 10.000 0.334	4750 10900 14400 7140 4657	A1 A1 A1 A1	Inverkehrbringen: verboten Nachfüllen: verboten Meidepflicht und Wartungsheft: Anlagen mit Füllmenge > 3 kg Dichtigkeitskontrolle: Anlagen mit > 3 kg Füllmenge
HFCKW (teilweise halogenierte Fluorchforkohlen- wasserstoffe)	(Blends)	R-502 R-22	0.055	1810	A1	Dictiogrammatic. Prinager Int > 3 kg Pullinge	
	(teilweise halogenierte	Kältemittel Gemische	D 4044 (14D00)	0.037	1182		
	(Blends), überwiegend R-22-haltig	R-401A (MP39) R-402A (HP80) R-402B (HP81) R-408A (FX-10) R-409A (FX-56)	0.037 0.021 0.033 0.021 0.048	2788 2416 3152 1585	A1 A1 A1 A1 A1		
	HCFO (teilweise halogenierte Fluorohlorolefine)	Einstoff- Kältemittel	R-1233zd(E) R-1233zd(Z) R-1224yd(Z)	<0.0004 <0.0004 0.00023	3.7 0.4 0.8	A1 A1 A1	Inverkehtrüngen: Verbor mit Ausnahme, wenn nach dem Stand der Technik ein Ersatz fehlt um Massnahmen zu Vermeidung von Emissionen der Kältemittel getroffen wurden. Nachfüllen: zulässig Meldepflicht um Wartungsheft: Anlagen mit Füllmenge > 3 in Dichtigkeitskontrolle: Anlagen mit Füllmenge > 3 kg
In der Luft stabile Kältemittel	FKW / HFKW (vollständig oder teilweise halogenierte Fluorkohlenwasserstoffe)	Einstoffk älternittel	R-23 R-32 R-125 R-134a R-143a R-404A	0 0 0	14800 675 3500 1430 4470	A1 A2L A1 A1 A2L	Inverkentröringen: eingeschränkt zulässig in Abhängigkeit vo Kälteleistung, Treibhauspotenzial und Sekundärkreistäufen. Ausnahmebewilliqung, wenn nach dem Stand der Technik die Sicherbeitsanforderungen gemäss SN EN 378-1, -2 und -3 ohne in der Luft stabile Kältemittel nicht eingehalten werden können.
		Gemische (Blends)	R-407C R-407F R-410A R-413A	0 0 0	1774 1825 2088 2053	A1 A1 A1 A1 A2	Kalterniten inchr engeniaten werden können. Nachfüllen von Anlagen 40 Tonnen CO2-Äquivalent und GWP des Kälternittels 2 2500: nur regeneriertes Kälternittel. Ab 1. Januar 2030 Nachfüllen verboten. Meldepflicht und Warfungsheft: Anlagen mit Füllmenge > 3 i Dichtigkeitskontrolle: Anlagen mit Füllmenge > 3 kg oder >
			R-417A R-422A R-422D R-437A R-507A	0 0 0	2346 3143 2729 1805 3985	A1 A1 A1 A1	5 Tonnen CO2-Aquivalent
			R-508A R-508B	0	13214 13396	A1 A1	
		Gemische mit HFO (Blends)	R-448A R-449A R-450A R-452A	0	1386 1396 601 2140	A1 A1 A1	
			R-454C R-455A R-513A	0 0	146 146 630	A2L A2L A1	
Nicht ozonschicht- abbauende und in der Luft nicht stabile Kältemittel	Natürliche Kälternittel	Einstoff- Kältemittel	R-170 (Ethan) R-290 (Propan) R-717 (NH3) R-718 (H±O) R-744 (CO2) R-600 (Butan) R-600a (Isobutan) R-1270 (Propen)	0 - 0 0 0 0 0	6 3 0 0 1 4 3 2	A3 A3 B2L A1 A1 A3 A3 A3	Inverkehtringen: zulässig Nachfüllen: zulässig Meldegflicht und Wartungsheft: Anlagen mit Füllmenge > 3 Dichtigkeitskontrolle: keine Vorgaben
(teil		Gemische (Blends)	R-290/R-600a R-290/R-170 R-723 (DME/NH3)	0 0	3 3 8	A3 A3 _4	
	HFO (teilweise halogenierte Fluorolefine)		R-1234yf R-1234ze R-1336mzz(Z)	0	<1 <1 2	A2L A2L A1	

Hinweis:

- Sind die Kälteanlagen schon sehr alt > 15 Jahre, ist die Wirtschaftlichkeit einer Kältemittelumstellung oft nicht wirtschaftlich
- Achten Sie darauf, dass Sie zukunftssicher sind.
 - Ein Betrieb sollte über 2030 hin gewährleistet sein (bei jungen Anlagen)
 - Bei Neuanlagen: Nutzen Sie, wenn immer möglich, klimaneutrale Kältemittel mit einem GWP < 7.
- Propan ist hier eine Möglichkeit!

Effizienzsteigernde Maßnahmen

Weitere Optimierungsmöglichkeiten bei Kälteanlagen:

Wartung

 Reinigen der Wärmetauscherflächen der Verdampfer und Verflüssiger im Rahmen der Wartung.

https://industriereinigung.kippumwelttechnik.de/industrieservice/reinigungsverfahren/

- Lassen Sie die Verflüssiger und Verdampfer mindestens 1x jährlich reinigen. Empfehlung: Im Frühjahr, damit die Kälteleistung im Sommer anliegt und Verschmutzungen aus dem Herbst/Winter entfernt wurden.
- Denn sonst ist:
 - der Widerstand des Ventilators $\uparrow \rightarrow \uparrow$ Energiebedarf
 - die Rückverflüssigung nicht effizient → ↑ Verdichterleistung → ↑ Energieb Ed 🗟 🕂

Effizienzsteigernde Maßnahmen

Weitere Optimierungsmöglichkeiten bei Kälteanlagen:

Synergieeffekte (Wärmepumpenbetrieb) ggf. sinnvoll mit PV-Kombination und Speicher

 Sollte die Wärmeanlage (Heizung) oder die Kälteanlage abgängig sein, können kombinierte Geräte "Kälteanlage mit Wärmepumpenfunktion" eine Lösung sein. (Kälte- und Heizleistung muss in einem zur Anlagentechnik angepassten Verhältnis stehen)

Effizienzsteigernde Maßnahmen

Weitere Optimierungsmöglichkeiten bei Kälteanlagen:

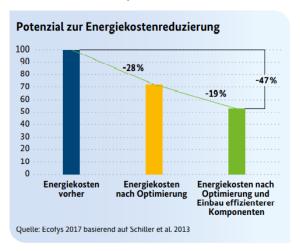
Effizienzsteigernde Maßnahmen

Weitere Optimierungsmöglichkeiten bei Kälteanlagen:

Erhöhung der Kälteleistung – ! so bitte nicht ! So auf gar keinen Fall !

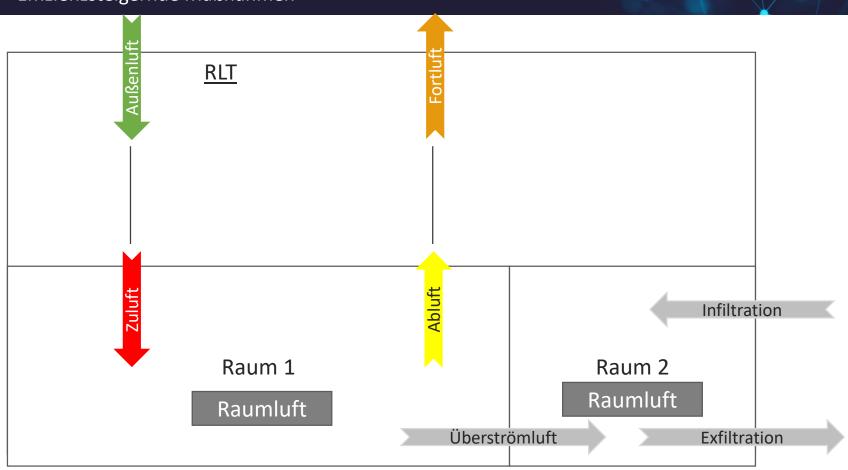
Kälteerzeugung und Verwendung in der RLT

Effizienzsteigernde Maßnahmen


Weitere Optimierungsmöglichkeiten bei Kälteanlagen:

 Nahezu jede Klima- und Lüftungsanlage lässt sich verbessern

Einfache Maßnahmen erzielen oft erhebliche Kosteneinsparungen


Allein durch Optimierungsmaßnahmen lassen sich in der Regel Energiekostenreduzierungen von ca. 30 Prozent realisieren. Wenn zusätzlich effizientere Komponenten eingebaut werden, lassen sich die Energiekosten von Klima- und Lüftungsanlagen durchschnittlich um fast die Hälfte reduzieren.

So viel lässt sich einsparen:

Effizienzsteigernde Maßnahmen

Quelle: https://www.lueftungsanlagen.net/luftarten.html

Effizienzsteigernde Maßnahmen

Überprüfung der Dämmung:

 Unzureichende Dämmung der Lüftungsbauteile führt zum ungewollten Aufheizen bzw. Abkühlen der Luft in den Lüftungskanälen

Effizienzsteigernde Maßnahmen

Anpassung der Laufzeiten:

Referenzanlage:

- Laufzeit: 13-00 Uhr, 7 Tage, 50 Wochen
 → 3.850 h/a
- Motorleistung der Ventilatoren: 7,5 kW
- Je ein Ventilator für Zu- und Abluft
- Strompreis: 0,4 €/kWh

Energieverbrauch: P_{el} = 3.850 h/a *7,5 kW *2= 57.750 kWh

Laufzeitoptimierung: 9 h/d → 3.150h/a

Energieverbrauch: P_{el} = 3.150 h/a * 7,5 kW *2 = 47.250 kWh

Ersparnis: 10.500 kWh = 4.200 €/a

Effizienzsteigernde Maßnahmen

Drehzahlregelung:

- Anpassung der Volumenströme an den tatsächlichen Bedarf
- Regelung zum Beispiel in Abhängigkeit von:
 - Lufttemperatur
 - Luftfeuchtigkeit
 - CO- und CO₂-Konzentration
 - Besucheranzahl

Warum spart eine Drehzahlregelung so viel Energie ein?

Effizienzsteigernde Maßnahmen

Drehzahlregelung:

 Die Leistung der Ventilatoren steht in dritter Potenz zur Drehzahl bzw. dem geförderten Volumenstrom

$$\frac{P_{w_1}}{P_{w_2}} = \left(\frac{n_1}{n_2}\right)^3$$

$$P_{w_2} = \text{Leistungsbedarf Betriebspunkt 1 (kW)}$$

$$P_{w_2} = \text{Leistungsbedarf Betriebspunkt 2 (kW)}$$

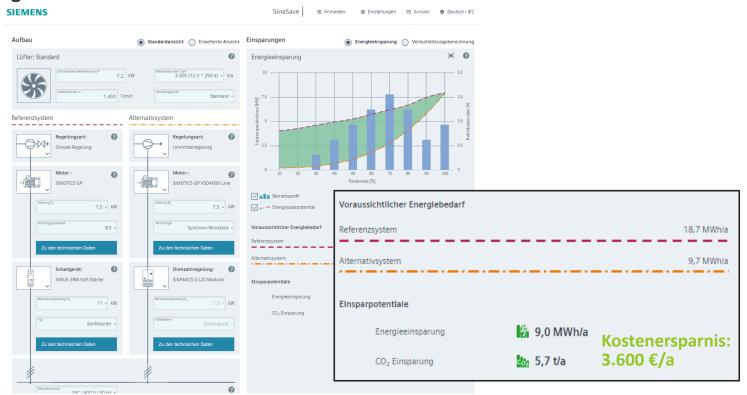
$$n_1 = \text{Drehzahl Betriebspunkt 1 (1/min)}$$

$$n_2 = \text{Drehzahl Betriebspunkt 2 (1/min)}$$

- 50 Hz= 100% Volumenstrom =P_{el}= 7,5 kW
- Reduktion des Volumenstroms auf 60 % = 30 Hz
- $P_{el} = 7.5*(6/10)^3 = 1.62 \text{ kW}$

Die Reduktion des Volumenstroms um 40 % reduziert die Leistung um ca. 78%

Reduktion von 5,9 kW bei 3150 h/a →18.585 kWh/a

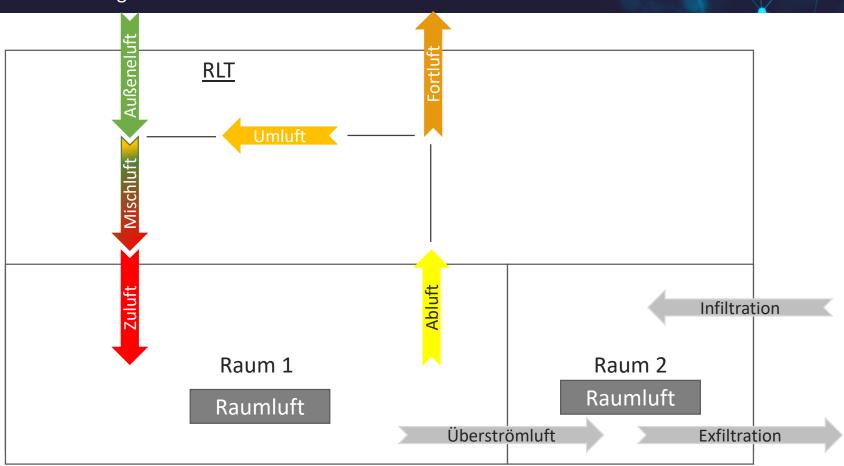

Kostenersparnis: 7.434 €/a (für einen Ventilator)

Effizienzsteigernde Maßnahmen

Drehzahlregelung:

 Die Leistung der Ventilatoren steht in dritter Potenz zur Drehzahl bzw. dem geförderten Volumenstrom

Effizienzsteigernde Maßnahmen

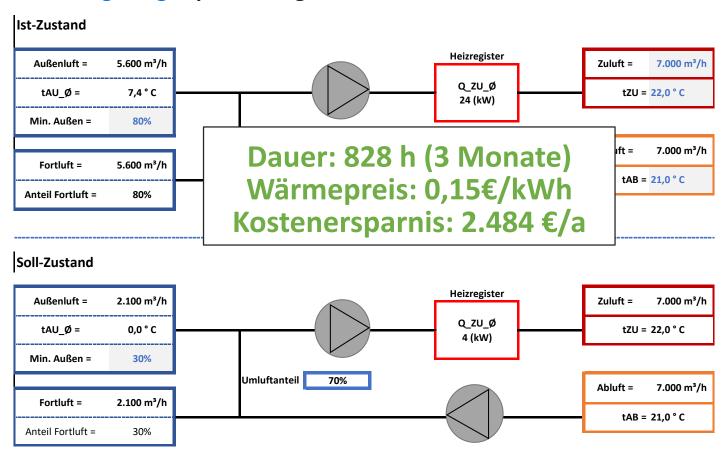

Drehzahlregelung:

- Umsetzung:
 - Frequenzumrichter
 - Riemenscheiben (älteren Anlagen)

Effizienzsteigernde Maßnahmen

Quelle: https://www.lueftungsanlagen.net/luftarten.html

Effizienzsteigernde Maßnahmen

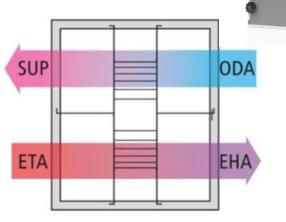

Umluftregelung:

- Ein bestimmter Anteil der Abluft aus dem Raum, wird nicht aus dem Gebäude abgeführt, sondern mit Frischluft gemischt und dem Raum als Zuluft wieder zugeführt
 - → Die Lufttemperatur liegt schon näher an der Zieltemperatur
- Die Regelung der Laufzeiten, des Volumenstroms und des Außenluftanteils sollte in Abhängigkeit der Raumtemperatur, der Luftfeuchtigkeit sowie der CO- und CO2-Konzentration erfolgen

Effizienzsteigernde Maßnahmen

Umluftregelung: Optimierung der Außenluftrate im Winter

Quelle: Wolf


Raumlufttechnische Anlagen

Effizienzsteigernde Maßnahmen

Wärmerückgewinnung

- Das Prinzip der Wärmerückgewinnung nutzt die Temperatur der Abluft, um die Frischluft vorzuwärmen
- Wirkungsgrad wird definiert über die Rückwärmezahl: 0,4-0,8
- Umsetzung:
 - Plattenwärmetauscher
 - Rotationswärmetauscher
 - Kreislaufverbundsysteme
 - Kreuzstromwärmetauscher

Einsparpotential Von bis zu ~50% der Heizenergie möglich

Gebäude

Effizienzsteigernde Maßnahmen

Dämmung des Gebäudes

Austausch alter Fenster und Türen

- →Der Umfang und die Effizienz der Maßnahmen hängt maßgeblich vom Gebäudezustand ab
- → Meist mit hohen Investitionskosten verbunden

→ Förderung in der Beratung und der Umsetzung

Projektion

Ein nicht zu unterschätzender Energiebedarf

Projektion

Energieverbräuche verschiedener Projektionstechnologien

Lichtquelle	Xenon-Lampe (7kW)	Externe Laserlichtquelle	
Stromverbrauch	10,58 kW	4,82 kW	
Kühlmethode	Externe Abluft: 0,2kW	1,55 kW	
Stromverbrauch gesamt	10,78 kW	6,37 kW	
Einsparung	4,41 kW		

• Laufzeiten: 7 h/d \rightarrow 7*7*50 = 2.450 h/a

Strompreis: 0,4 €/kWh

Reduktion um 4,41 kW bei 2.450 h/a \rightarrow 10.804,5 kWh/a

Kostenersparnis: 4.321,8 €/a

Projektion

Ein nicht zu unterschätzender Energiebedarf

Projektion

• Server:

2 x Netzteile mit 300 W pro Projektor

• Annahme: 6

• Laufzeiten: 9 h/d \rightarrow 9*7*50 = 3.150 h/a

• Laufzeitreduktion: 2h (7*7*50=2.450 h/a)

• Strompreis: 0,4 €/kWh

Energieeinsparung: 2.520 kWh/a

Kostenersparnis: 1.008 €/a

Ton

Ein nicht zu unterschätzender Energiebedarf

Ton

Beispielrechnung:

• 1 Saal

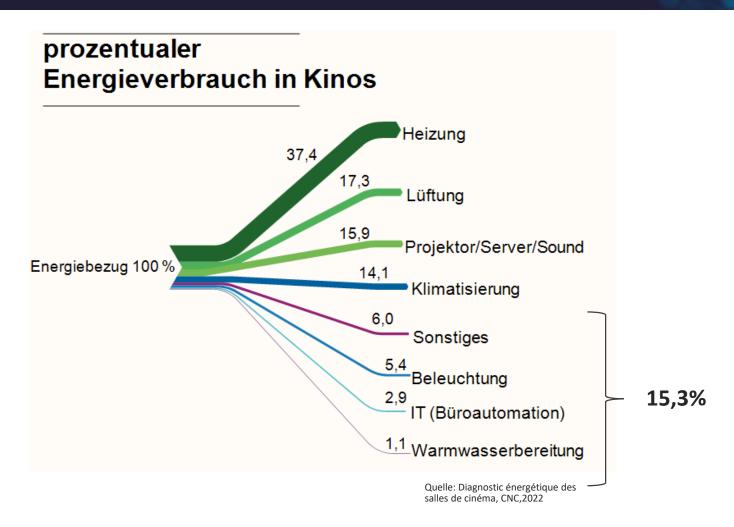
• 10 Endstufen á 50 Watt (im Standby)

Laufzeit: 24h

24 h x 7d/Wo x 50Wo/a = 4.200 kWh

Effektiv: 6h/d

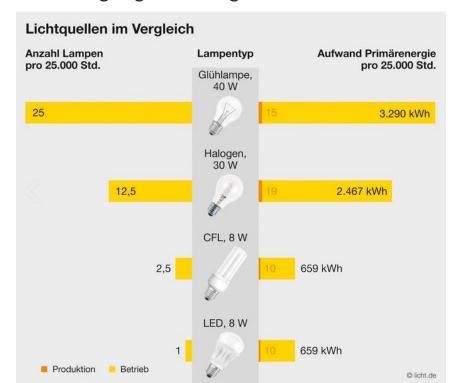
6 h x 7d/Wo x 50Wo/a = 1.050 kWh


Differenz: 3.150 kWh ~ 1.260 EUR (bei 0,4 EUR/kWh)

* 6 Säle: = **7.260 EUR**

Energieeinsatz und -verbrauch

Wo geht die ganze Energie eigentlich hin?


Maßnahmen zur Energieeinsparung (Sonstige)

Kleinvieh macht auch Mist

Beleuchtung

Umrüstung der vorhandenen Leuchtmittel auf LED

→Im Vergleich zu herkömmlicher Beleuchtung liegt der Energieverbrauch nur bei 10-15 %

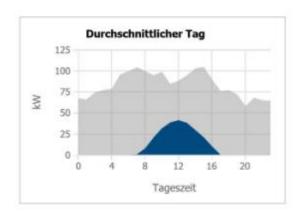
- Einschaltzeiten minimieren
- Bewegungsmelder
- Automation der Beleuchtung

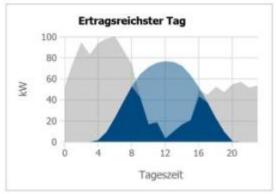
Maßnahmen zur Energieeinsparung (Sonstige)

Kleinvieh macht auch Mist

Concession

- Spülmaschinen nur laufen lassen, wenn diese komplett voll sind
- Kühlschränke nur an, wenn diese benötigt werden
- Wenn möglich, Kühltruhen zusammenlegen
- Post-Mix-Anlagen nur an, wenn diese benötigt werden
- Prüfen Sie, ob Sie automatisieren können
- Wärmeschränke für Popcorn und Nachos, nach Bedarf/ erwartetem Besuch betreiben


Weitere Optimierung Synergieeffekte nutzbar machen


Sektorenkopplung und integrative Konzepte

Eigenerzeugung des elektrischen Stroms

- Energieverbrauchsanalyse
- Ausrichtungsanlayse
- Statische Analyse

Tipp:

Monetäre Betrachtung: Die Anlage sollte möglichst in die Grundlast gelegt werden, denn die Einspeisevergütung ist relativ gering.

Ökonomische Betrachtung: Um das Unternehmen bilanziell klimaneutral zu bekommen, sollte die Anlage einen möglichst hohen Ertrag haben.

Eigenerzeugung des elektrischen Stroms

Nutzung der Vorteile mehrerer Anlagen

- Problem 1: Aufheizen der Lüftungsanlagen (siehe oben)
- Lösung: Verschattung des Kanalnetzes durch z.B. eine PV-Anlage

Eigenerzeugung des elektrischen Stroms

Nutzung der Vorteile mehrerer Anlagen

- Problem 2: Spitzenlasten
- Lösung: Spitzenlastreduktion durch PV-Anlage / Speicher

Photovoltaikanlagen Eigenerzeugung des elektrischen Stroms

Spitzenlastreduktion

Problem: Ein gleichzeitiges einschalten vieler großer Lasten erhöht die Spitzenlast und damit den Leistungspreis

Preisbestandteile im Versorgungsnetz der "Harz Energie Netz GmbH"

Für das Jahr 2021

Projek esteradteile	0	Dolotic	Abaalut	aktuell unrealistisch
Preisbestandteile	Q	Relativ	Absolut	
Arbeitspreis		5,280 ct/kWh	16.990,93€	
Leistungspreis		23,040 €/kW	3.852,29€	
Arbeitspreis Netz		5,280 ct/kWh	16.990,93€	
EEG-Umlage		6,500 ct/kWh	20.916,87€	
Stromsteuer		2,050 ct/kWh	6.596,86€	
§19 StromNEV-Umlage (Kat. A)		0,432 ct/kWh	1.390,17€	
Offshore-Netzumlage		0,395 ct/kWh	1.271,10€	
KWKG-Umlage		0,254 ct/kWh	817,37€	
AbLaV-Umlage		0,009 ct/kWh	28,96€	
Konzessionsabgabe		0,110 ct/kWh	353,98€	
Umsatzsteuer		-	-	
Summe			69.209,46€	
Durchschnittlicher Strompreis		21,507 ct/kWh		

Folie 79

Eigenerzeugung des elektrischen Stroms

Spitzenlastreduktion

- Problem: Ein gleichzeitiges einschalten vieler großer Lasten erhöht die Spitzenlast und damit den Leistungspreis
- Lösung: PV-Anlage mit Speicher
- Versetztes Einschalten großer Verbraucher (mindestens 15 Minuten)

<u>Hinweis:</u> Eine hohe Elektrifizierung (Wärmepumpe usw.) erhöht den Leistungspreis. Dies sollte bei der Wirtschaftlichkeitsbetrachtung unbedingt mit betrachtet werden.

SektorenkopplungSynergieeffekte nutzbar machen

Wo kann die Energie möglicherweise "ein zweites Mal" eingesetzt werden

Nutzung von Abwärme

Beispiel Projektor:

- Kann die Abwärme des Kolben aktiv zur Beheizung genutzt werden?
- Kann die Kühlung des Projektors die Rücklauftemperatur eines Systems anheben?

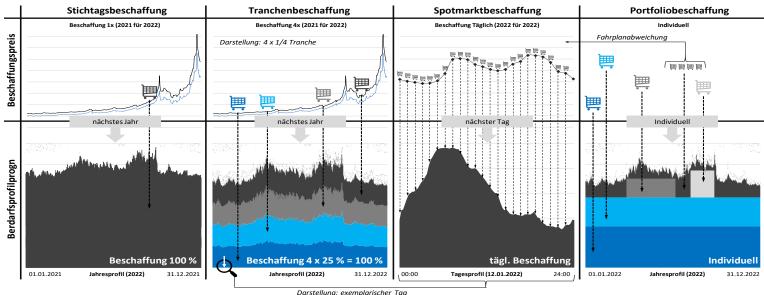
Beispiel Kälte:

- Nutzung der Abwärme der Kälteanlage
- Wärmepumpenbetrieb der Heizungsanlage (Sommer Kälte / Winter Heizung)
- Kann die Abwärme des Klimaregisters gezielt zur Nacherhitzung genutzt werden?

Kaskadierte Wärmeverwendung

Beispiel Wärmeverteilung:

- Solltemperatur 1 70°C -> Rücklauftemperatur 50°C
- Solltemperatur 2 50°C -> Rücklauftemperatur 45°C
- Solltemperatur 3 45°C -> Rücklauftemperatur 30°C (gut für Brennwerttechnologie)



Maßnahmen zur Energieeinsparung (Sonstige)

Kleinvieh macht auch Mist

Weitere Optimierung

- Standorttransparenz zur Erfassung der Energieverbräuche und gezielter Maßnahmenentwicklung
- Optimiertes einschalten von Verbrauchern (Vorstellungsbezogenes einschalten von Verbrauchern)
- Optimierter Energieeinkauf (ggf. im Pool)

Eigenerzeugung (s.o.)

Wie kann ich als Mieter Maßnahmen umsetzen

Vorgehen als Mieter:

Wie und wann macht es Sinn, als Mieter Maßnahmen umzusetzen?

Wie kann ich als Mieter Maßnahmen umsetzen

0. Maßnahmenumsetzung als Mieter – Für Ihren Energieverbrauch und die Wartungskosten sind Sie größtenteils selber verantwortlich

Leichter gesagt als getan.

Suchen Sie den "Schulterschluss" zum Vermieter.

Sprechen Sie mit der Wartungsfirma über Optimierungsmöglichkeiten, die sich kostengünstig umsetzen lassen.

Optimieren Sie hierdurch Ihre Betriebskosten

Wie kann ich als Mieter Maßnahmen umsetzen

1. Maßnahmenumsetzung als Mieter - Gesetz zur fairen Aufteilung der CO2—Kohlendioxid-Kosten

Bisher mussten Mieterinnen und Mieter diese Kosten allein tragen. Mit dem Gesetz zur fairen Aufteilung der CO2—Kohlendioxid-Kosten will die Bundesregierung Vermieterinnen und Vermieter ab 2023 stärker beteiligen – je nach energetischem Zustand des Mietshauses

Kostenteilung entfällt in Ausnahmefällen

In manchen Fällen hindern Vorgaben – zum Beispiel aufgrund von Denkmalschutz, der Pflicht zur Nutzung von Fernwärme oder Milieuschutz – Vermieterinnen und Vermieter daran, die Energiebilanz von Gebäuden zu verbessern. Ihr Kostenanteil wird dann halbiert oder entfällt ganz.

Wie kann ich als Mieter Maßnahmen umsetzen

1. Maßnahmenumsetzung als Mieter - Gesetz zur fairen Aufteilung der CO2—Kohlendioxid-Kosten

Nichtwohngebäude: zunächst hälftige Teilung des CO2-Preises

Bei Nichtwohngebäuden gilt zunächst <u>übergangsweise eine hälftige Teilung</u> des CO2-Preises. Ein Stufenmodell wie bei Wohngebäuden eignet sich derzeit noch nicht, da diese Gebäude in ihren Eigenschaften zu verschieden sind. Die Datenlage reicht aktuell nicht aus für eine einheitliche Regelung. Hier gilt es, wie im Gesetz vorgesehen, bis Ende 2024 die dafür erforderlichen Daten zu erheben. Ein <u>Stufenmodell für Nichtwohngebäude soll dann Ende 2025 eingeführt</u> werden.

Stufenmodell:

- Je schlechter der energetische Zustand, desto höher ist der Kostenanteil
- Investieren in klimaschonende Heizungssysteme und energetische Sanierungen, dann sinkt der Anteil.
- Die Aufteilung erfolgt in Abhängigkeit des CO2-Ausstoßes pro Quadratmeter
- Vermieterinnen und Vermieter ermitteln die CO2-Kosten und den Verteilungsschlüssel im Zuge der jährlichen Heizkostenabrechnung.

Wie kann ich als Mieter Maßnahmen umsetzen

2. Maßnahmenumsetzung als Mieter - Eigeninitiative

- Sprechen Sie Ihren Vermieter an
- Erläutern Sie ihm 1.
- Erfassen Sie die Betriebs- und Wartungskosten
- Fragen Sie ein Richtpreisangebot bei Ihrer Wartungsfirma für einen potenziellen Ersatz 1:1 Ersatz an.
- Besprechen Sie die Ergebnisse mit Ihrem Vermieter und stellen Sie einen 12:1 Austausch in Frage.
- Setzen Sie ggf. selber die Maßnahme um und vereinbaren Sie beispielsweise langfristigere Mietverträge o.ä.

Agenda

- Zum Unternehmen
- Energieeinsatz und -verbrauch
- Maßnahmen zur Effizienzsteigerung
- Fördermöglichkeiten
- Noch Fragen? Offener Austausch und Fallbeispiele

Förderprogramme

Optimierungsmöglichkeit bei der Investition

- Es gibt einen bunten Blumenstrauß
- Kurze Übersicht / Auszug (Technik)
- Ohne regionale Förderprogramme
- !! Unabhängig der Corona Hilfen !!
- Immer unter Berücksichtigung von Vorgaben im Förderprogramm

Förderprogramme
Optimierungsmöglichkeit bei der Investition

BAFA - Bundesförderung Energieberatung für Nichtwohngebäude, Anlagen und Systeme [EBN]

Teilprogramme	Modul 1: Energieaudit DIN EN 16247	Modul 2: Energieberatung DIN V 18599	
Antragsberechtigung	 KMU Nicht-KMU, deren Gesamtenergieverbrauch über alle Energieträger hinweg im Jahr max. 500.000 kWh beträgt Kommunale Gebietskörperschaften, kommunale Zweckverbände gemeinnützige Organisationen, Religionsgemeinschaften mit Körperschaftsstatus und deren Einrichtungen* Soziale und gesundheitliche Einrichtungen Kultureinrichtungen 		
Fördergegenstand	Modul 1: Energieaudit, entsprechend der DIN EN 16247-1	Modul 2: Energetisches Sanierungskonzept bzw. Neubauberatung	
Art und Höhe der Förderung	 Unternehmen mit jährlichen Energiekosten > 10.000 €: 80 % der förderfähigen Beratungskosten max. 6.000 €. Unternehmen mit jährlichen Energiekosten < 10.000 €: 80 % der förderfähigen Beratungskosten max. 1.200 € 	 80 % des förderfähigen Beratungshonorars Zuschuss max. 8.000 € in Abhängigkeit der Nettogrundfläche (NGF): NGF < 200 m²: max. 1.700 € 200 m² - 500 m²: max. 5.000 € NGF > 500 m²: max. 8.000 € 	

Förderprogramme Optimierungsmöglichkeit bei der Investition

EEW- Bundesförderung für Energieeffizienz in der Wirtschaft – Zuschuss [KfW] und Kredit [Bafa]

Antragsberechtigung	Fördergegenstand
Unternehmen der gewerblichen Wirtschaft Kommunale Unternehmen Freiberufler Contractoren	Modul 1 – Querschnittstechnologien Elektrische Motoren und Antriebe Pumpen für die industrielle und gewerbliche Anwendung Ventilatoren Druckluftanlagen sowie deren übergeordnete Steuerung Anlagen zur Abwärmenutzung bzw. WRG aus Warmwasser Dämmung von industriellen Anlagen bzw. Anlagenteilen Frequenzumrichter Modul 2 – Maßnahmen zur Prozesswärmebereitstellung aus erneuerbaren Energien Solarkollektoranlagen Biomasseanlagen Wärmepumpen Auch Kosten für Einbindung in vorhandenen Prozess sowie für die zur Ertrags- und Fehlerüberwachung installierten Mess- und Datenerfassungseinrichtungen Modul 3 – Mess-, Steuer und Regelungstechnik, Sensorik und Energiemanagementsoftware Softwarelösungen zur Unterstützung eines Energiemanagementsystems oder Umweltmanagementsystems (Energiemanagement-Software) Sensoren sowie Analog-Digital-Wandlern zur Erfassung von Energieströmen sowie sonstiger für den Energieverbrauch relevanter Größen zwecks der Einbindung in das Energie- oder Umweltmanagementsystem

Modul 4 - Energie- und Ressourcenbezogene Optimierung von Anlagen und Prozessen

Die Förderung ist technologieoffen und kann auch die unter den Modulen 1 und 3 genannten Maßnahmen umfassen.

- Prozess- und Verfahrensumstellungen auf effiziente Technologien und energetische Optimierung
- Maßnahmen zur Abwärmenutzung
- Maßnahmen an der Gebäudeanlagentechnik
- Maßnahmen zur energieeffizienten Bereitstellung von Prozesswärme und -kälte
- Maßnahmen zur Vermeidung von Energieverlusten im Produktionsprozess

Art der Förderung

Höhe der Förderung

 Tilgungs- bzw. Investitionszuschus 	SS
--	----

	Modul 1	Modul 2	Modul 3	Modul 4
Allgemein	30 %	45 %	30 %	30 %, max. 500 € je eingesparte t CO ₂
KMU	40 %	55 %	40 %	40 %, max. 900 € je eingesparte t CO ₂
max. Förderhöhe je Vorhaben	200.000 €	10.000.000 €		

- Finanzierung: Bis zu 100 % der förderfähigen Investitionskosten.
- Kreditbetrag: Bis zu 25 Mio. €.

BAFA | KfW Bundesförderung für effiziente Gebäude - Einzelmaßnahmen [BEG EM] -Kredit (KfW 263) & Zuschuss (BAFA)

Antragsberechtigung	Fördergegenstand	
 Privatpersonen & Wohnungseigentümergemeinschaften Freiberufler Kommunale Gebietskörperschaften Kommunale Gemeinde- und Zweckverbände Kammern oder Verbände Gemeinnützige Organisationen (auch Kirchen) Unternehmen (einschl. Einzelunternehmer & kommunale Unternehmen) 	 Einzelmaßnahmen in Bestandsgebäuden für Wohn- und Nichtwohngebäude: Einzelmaßnahmen an der Gebäudehülle Anlagentechnik (außer Heizung) Anlagen zur Wärmeerzeugung (Heizungstechnik) Heizungsoptimierung Fachplanung und Baubegleitung 	
Art und Höhe der Förderung	 Einzelmaßnahmen an der Gebäudehülle: 15 % Anlagentechnik (außer Heizung): 15 % Einbau, Austausch oder Optimierung raumlufttechnischer Anlagen inklusive Wärme-/Kälterückgewinnung Einbau von Mess-, Steuer- und Regelungstechnik zur Realisierung eines Gebäudeautomatisierungsgrades mindestens der Klasse B nach DIN V 18599-11 Energieeffiziente Beleuchtung Kältetechnik zur Raumkühlung Anlagen zur Wärmeerzeugung: Solarthermieanlagen 25 % Biomasseanlagen 10 % (+5 %) Wärmepumpen 25 % Hybridheizung 20 % (+5 %) Gebäudenetze 25 % Wärmenetze 25 % 	

Höchstgrenzen förderfähiger Kosten	Höchstgrenze bei Nichtwohngebäuden (NWG):
	 Förderfähige Kosten für energetische Sanierungsmaßnahmen: gedeckelt auf 1.000 € / m² Nettogrundfläche insgesamt max. 15 Mio. € Förderfähige Kosten für Baubegleitung: 5 € / m² Nettogrundfläche max. 20 000 € / Rewilligung

Optimierungsmöglichkeit bei der Investition

BAFA - Kälte- und Klimaanlagen [KKI]

Antragsberechtigung	Fördergegenstand
 Alle Unternehmen gemeinnützige Organisationen Kommunen kommunale Gebietskörperschaften Zweckverbände Eigenbetriebe Schulen Krankenhäuser kirchliche Einrichtungen Stationäre Anlagen: Eigentümer Pächter oder Mieter des Grundstückes, auf dem sich die stationäre Anlage befindet Contractor 	stationäre Kälte- und Klimaanlagen sowie Wärmepumpen ■ Die mit nicht-halogenierten Kältemitteln betrieben werden ■ Neuerrichtung bzw. Neuerrichtung Kälteerzeugungseinheit bei bestehendem Kühlmittelsystem ■ Im Einzelnen: b) Flüssigkeitskühlsätze NK / AC (auch Turboverdichter mit R-718) c) Ab- und Adsorptionsanlagen d) Gewerbekälteanlagen NK, TK (Direktverdampfung) e) LEH-Kälteanlagen mit Kühlmöbeln f) Adiabate Rückkühler (Hybridkühler) g) Adiabate Verdunstungskühlanlagen h) Wärmepumpen zur Nutzung von Prozessabwärme i) Komponenten für 1. Wärmepumpenbetrieb (Außenverdampfer) 2. Abwärmenutzung der Kälteanlage 3. Freikühlbetrieb j) Speicher: Warmwasser, Kaltwasser, Latentwärme, Eis k) Pauschalen für 1. Ausführungsplanung bei Flüssigkeitskühlsätzen und Sorptionskältemaschinen 2. Einbindung elektrischer Regenerativenergie (PV, Wind, BHKW mit Biomasse) 3. Einbindung thermischer Regenerativenergie (Solar- oder Geothermie, BHKW mit Biomasse) 4. Weitere Komponenten
	Schienenfahrzeugen, wenn diese mit nicht-halogenierten Kältemitteln betrieben werden.

Art und Höhe der Förderung

Der Gesamtförderbetrag ergibt sich als Summe der separat berechneten Teilförderbeträgen für

- Kälteerzeuger
- Komponenten, Systeme und Speicher
- Planungspauschale
- Kombinationsbonus

Stationäre Anlagen

Die Berechnung der Förderung erfolgt nach bestimmten, vom BAFA vorgegebenen Koeffizienten auf Basis der Kälteleistung (kW) bzw. der Speicherkapazität (kWh) oder das Volumen (dm³). Die Koeffizienten hängen von der Art des Kälteerzeugers bzw. der Komponente oder des Speichers ab.

Kühlsolekreisläufe

Die Berechnung der Förderung für Kühlsolekreisläufe mit Verrohrung, Dämmung, Fittings und Sole erfolgt auf Basis der Rohrlänge (m) und des Rohrdurchmessers (mm) in Verbindung mit den vom BAFA vorgegebenen Koeffizienten.

Ausführungsplanung

- 500 € pro Luftkühler / Verdampfer, mind. 1.000 € bzw. 2 Stück, max. 5.000 € bzw. 10 Stück
- 1.000 € für die Integration eines oder mehrerer Wärmespeicher oder Kältespeicher förderfähige Ausführungsplanung darf erst beauftragt werden, wenn Bewilligungsbescheid für die Förderung vorliegt.

Pauschale für die Einbindung von Regenerativenergieanlagen

- 100 € pro Kilowatt bereitgestellter Spitzenleistung des Regenerativstromsystems Max. bis zum doppelten der installierten elektrischen Leistung des geförderten Hauptkälteerzeugers
- 2.000 € einmalig für die Neu-Installation einer Anlage zur Erzeugung regenerativer Wärme

Dazu sind folgende elektrische Leistungen zugrundzulegen:

Kompressionskälteanlagen: elektrische Leistung der Verdichter

	 Adiabate Rückkühler: elektrische Leistung von Ventilatoren und Pumpen Adiabate Verdunstungskühlanlagen: elektrische Leistung von Ventilatoren und Adiabatik-Pumpe Der Kombinationsbonus wird nur einmal gewährt, entweder für die Bereitstellung von regenerativer elektrischer Energie oder regenerativer Wärme. 	
Förderhöchstgrenze	 150.000 € pro Maßnahme und 50 % der förderfähigen Ausgaben Bei AGVO maximale Beihilfeintensitäten prüfen. 	
Besondere Zuwendungs-bestimmungen	 Regelmäßige Wartung über 5 Jahre ab Inbetriebnahme (Nachweis über Wartungsvertrag) Monitoring: Verpflichtung über einen Zeitraum von 5 Jahren nach Inbetriebnahme dem BAFA mindestens einmal jährlich bestimmte Betriebsdaten zur Verfügung zu stellen 	

Optimierungsmöglichkeit bei der Investition

<u>Tipp</u>: In der Regel können Fördermittel immer dann eingeworben werden, wenn die Technologie den Stand der Technik übersteigt.

<u>Faustformel</u>: ~ 20 % der förderfähigen Investitionen (manchmal mehr, manchmal weniger)

Optimierungsmöglichkeit bei der Investition

Berechnung möglicher Förderhöhen

Optimierungsmöglichkeit bei der Investition

Beispielrechnung Förderung Projektor (nur Bewertung der elektrischen Anschlussleistung)

Alt Xenon:

Leistung: 10,58 kW Lüfter: 0,2 kW

Laufzeit 8h/d - 7d/Wo - 50Wo/aEnergiebedarf /a = 30.184 kWh

Neu Laser:

Leistung: 6,37 kW

Energiebedarf /a = 17.836 kWh

Differenz: 12.348 kWh

Förderung:

12.348 kWh * 0,732 kg/kWh = 9,04 t CO2/a2

8.135 EUR bei KMU 4.520 EUR bei NKMU "Grundsätzlich ist ein Projektor für den Betrieb eines Kinos in Modul 4 unseres Förderprogramms förderfähig, solange das antragsstellende Unternehmen nach Ziffer 6 der Richtlinie antragsberechtigt ist und nach Ziffer 5.4. der Richtlinie ein Prozessbezug vorliegt."

"Sehr geehrter Herr Deiters, die Beleuchtung kann als Prozess gesehen werden."

Quelle: schriftliche Aussage des Bafa am 29.11.2022

Systematische Schritte zu Energiebezugsreduktion

Weiterer Hinweis

 Grobe Übersicht liefert das grüne Kinohandbuch: Möglichkeiten und Maßnahmen für einen umweltfreundlichen Kinobetrieb

Bezug über Homepage der Filmförderungsanstalt FFA

Zusammenfassung

"Ein Patentrezept zum Energieeinsparen gibt es nicht, ABER es gibt strategisch sinnvolle Vorgehensweisen und Maßnahmen"

Agenda

- Zum Unternehmen
- Energieeinsatz und -verbrauch
- Maßnahmen zur Effizienzsteigerung
- Fördermöglichkeiten
- Noch Fragen? Offener Austausch und Fallbeispiele

Experten für angepasste Lösungen

Martin Deiters M.Eng.

Martin.Deiters@encadi.de 0251 777 489 32 0171 5604 183

© encadi GmbH

Karoline Munser B.Sc.

Karoline.Munser@encadi.de 0251 777 489 35